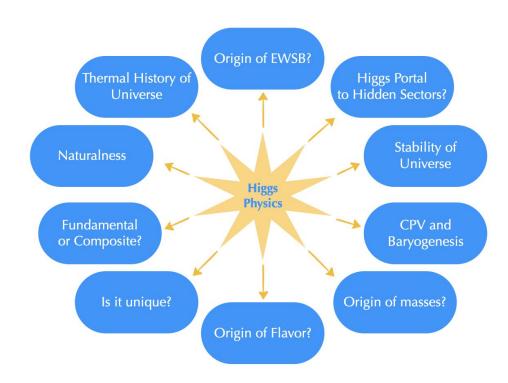
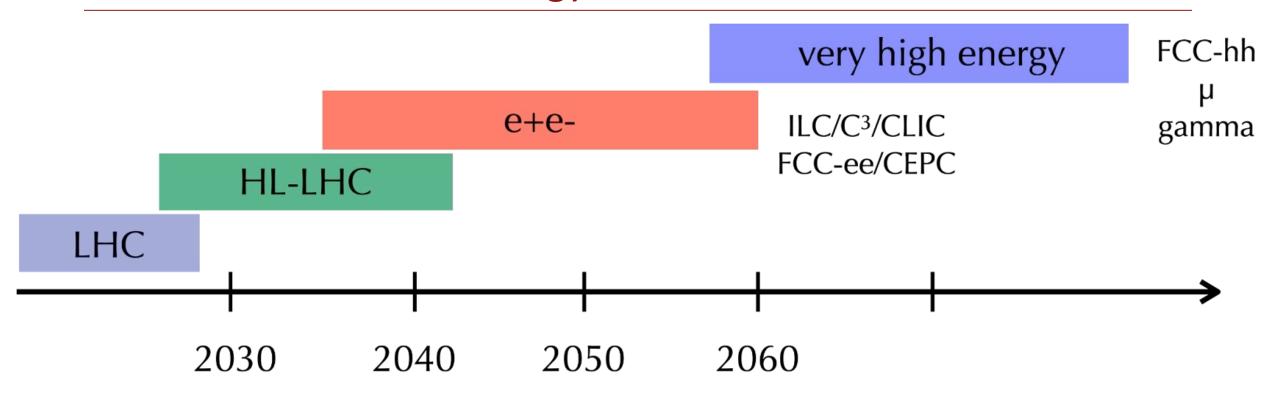


C³ session - Community Summer Study - Seattle

Caterina Vernieri, Emilio Nanni July 22, 2022

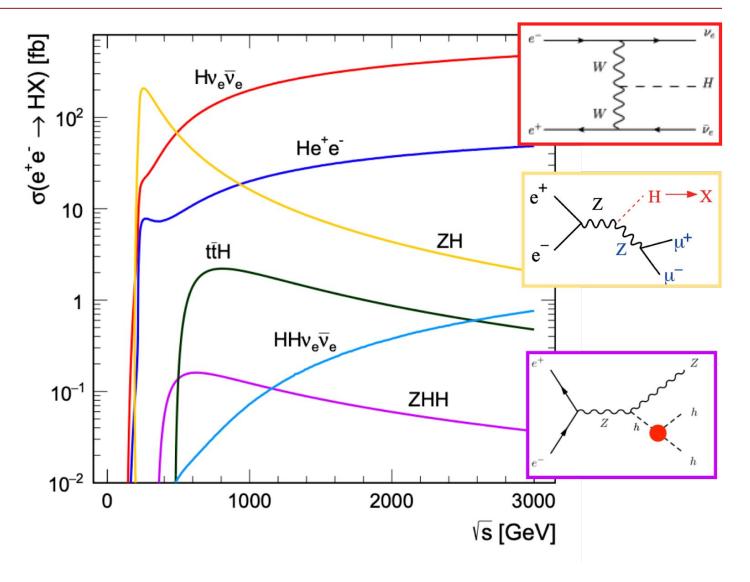


Higgs as a driver to explore the unknown


A roadmap

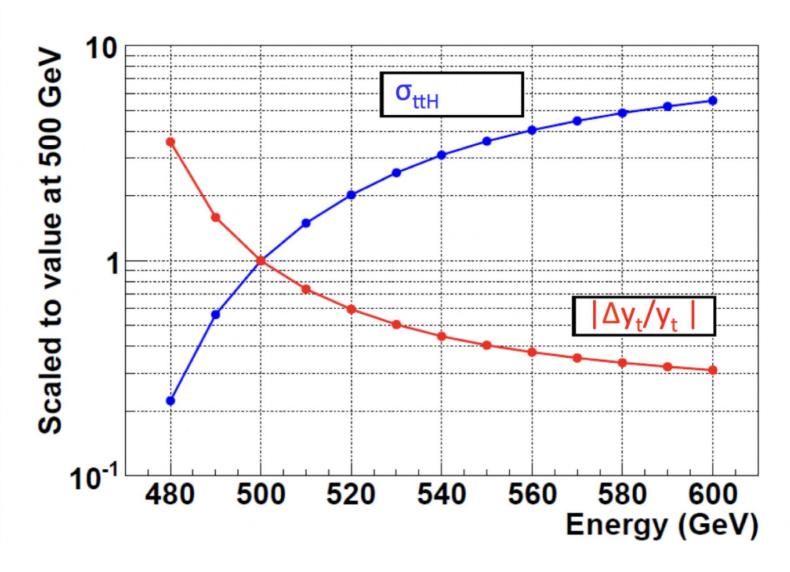
- The Higgs boson is our most recent advance in the understanding of the fundamental particles
- Colliders are essential to explore the properties of the Higgs boson
- Cool Copper Collider (C³): can provide a rapid route to precision Higgs physics with a compact footprint

What's Next for the Energy Frontier?


Wish list beyond HL-LHC:

- 1. Establish Yukawa couplings to light flavor \Rightarrow needs precision
- 2. Search for invisible/exotic decays and new Higgs ⇒ precision & lumi
- 2. Establish self-coupling \Rightarrow needs high energy

Higgs Production at e⁺e⁻


ZH is dominant at 250 GeV Above 500 GeV

- Hvv dominates
- ttH opens up
- HH production accessible with ZHH

Higgs-top coupling

From 500 to 550 GeV a factor two gain in precision on the Higgs-top coupling

Why 550 GeV?

We propose **250 GeV** with a relatively inexpensive upgrade to **550 GeV**

- An orthogonal dataset at 550
 GeV to cross-check a deviation
 from the SM predictions
 observed at 250 GeV
- From 500 to 550 GeV a factor
 2 improvement to the
 top-Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Collider	HL-LHC	C^3 /ILC 250 GeV	$\mathrm{C^3}$ /ILC 500 GeV
Luminosity	$3 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$	$2 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$	$+4 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$
Polarization	-	$\mathcal{P}_{e^+} = 30\% \ (0\%)$	$\mathcal{P}_{e^+} = 30\% \ (0\%)$
g_{HZZ} (%)	3.2	0.38 (0.40)	0.20 (0.21)
g_{HWW} (%)	2.9	0.38 (0.40)	0.20 (0.20)
g_{Hbb} (%)	4.9	$0.80 \ (0.85)$	0.43 (0.44)
g_{Hcc} (%)	-	1.8(1.8)	1.1 (1.1)
g_{Hgg} (%)	2.3	1.6 (1.7)	0.92 (0.93)
$g_{H\tau\tau}$ (%)	3.1	0.95(1.0)	0.64 (0.65)
$g_{H\mu\mu}$ (%)	3.1	4.0(4.0)	3.8 (3.8)
$g_{H\gamma\gamma}$ (%)	3.3	1.1 (1.1)	0.97 (0.97)
$g_{HZ\gamma}$ (%)	11.	8.9 (8.9)	6.5 (6.8)
g_{Htt} (%)	3.5	_	$3.0 (3.0)^*$
g_{HHH} (%)	50	49 (49)	22 (22)
Γ_H (%)	5	1.3 (1.4)	0.70 (0.70)

One note on polarization

arXiv:1708.08912, arXiv:1801.02840

- There are extensive comparisons between the FCC-ee plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT,
 2 ab⁻¹ of polarized running is essentially
 equivalent to 5 ab⁻¹ of unpolarized running.
- Electron polarization is essential for this
- There is almost no difference in the expectation with and without positron polarization.
 - o more cross-checks of systematic errors.
 - relevant at high energy (> TeV) where the most important cross sections are initiated from e^{-L}e^{+R}

	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350
coupling	pol.	pol.	unpol.	unpol
HZZ	0.50	0.35	0.41	0.34
HWW	0.50	0.35	0.42	0.35
Hbb	0.99	0.59	0.72	0.62
H au au	1.1	0.75	0.81	0.71
Hgg	1.6	0.96	1.1	0.96
Hcc	1.8	1.2	1.2	1.1
$H\gamma\gamma$	1.1	1.0	1.0	1.0
$H\gamma Z$	9.1	6.6	9.5	8.1
$H\mu\mu$	4.0	3.8	3.8	3.7
Htt	_	6.3	-	-
HHH	-	27	-	-
Γ_{tot}	2.3	1.6	1.6	1.4
Γ_{inv}	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

Strategy for C³

Run plans:

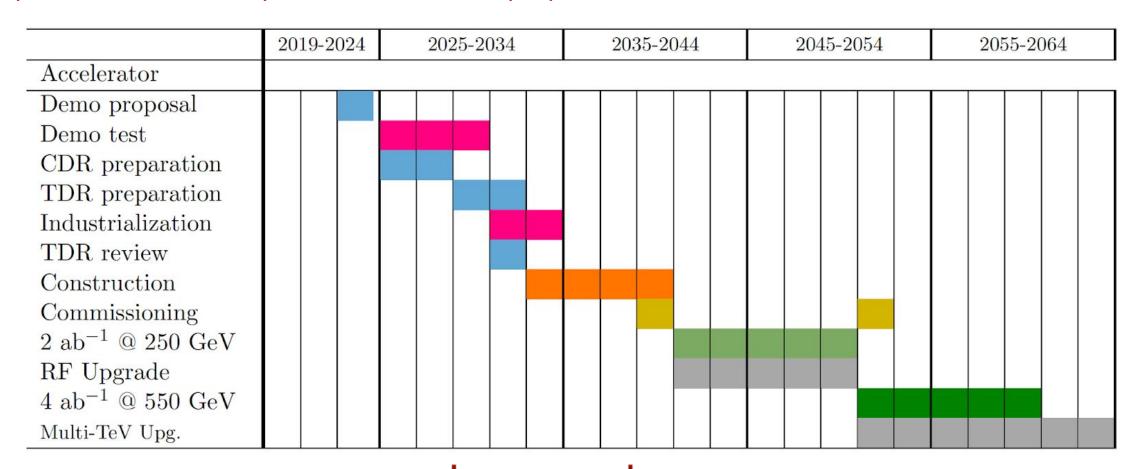
- Start at 70 MeV/m for C³-250
 - 2/ab in 10 years operations
 - Polarized e⁻ (80%)
- Upgrade with more RF power at 120 MeV/m for C³-550
 - Same footprint as C³-250
 - 4/ab in 10 years operations
 - Add polarized e⁺ at this stage
- If there is community interest in the Z run:
 - \circ C³ can run at the Z pole at 4 * 10³³/cm²s and deliver ~10⁹ Z in 2 years (**Giga Z** program)

Table of Parameters

Collider	CLIC	ILC	C_3	C_3
CM Energy [GeV]	380	250 (500)	250	550
Luminosity [x10 ³⁴]	1.5	1.35	1.3	2.4
Loaded Gradient [MeV/m]	72	31.5	70	120
Geometry Gradient [MeV/m]	57	21	63	108
Length [km]	11.4	20.5 (31)	8	8
Num. Bunches per Train	352	1312	133	75
Train Rep. Rate [Hz]	50	5	120	120
Bunch Spacing [ns]	0.5	369	5.26	3.5
Bunch Charge [nC]	0.83	3.2	1	1
Crossing Angle [rad]	0.0165	0.014	0.014	0.014
Site Power [MW]	168	125	~ 150	~ 175
Design Maturity	CDR	TDR	$\operatorname{pre-CDR}$	pre-CDR

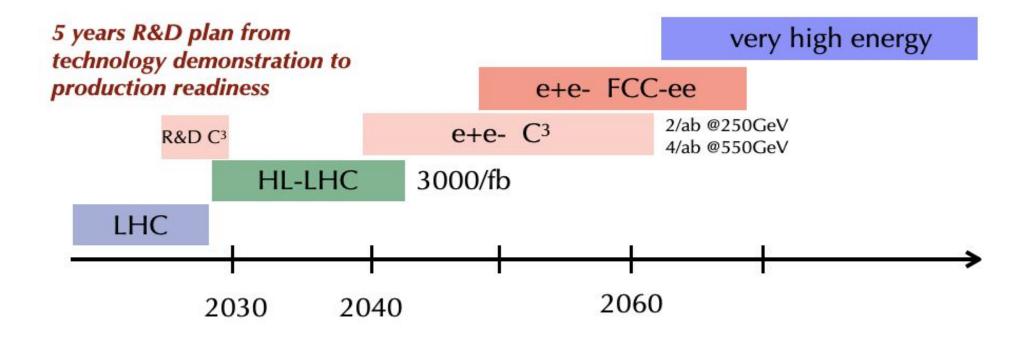
Luminosity Upgrades

Energy vs Luminosity: community feedback needed in developing the most appealing run plan


- Beam power can be increased for additional luminosity
 - To maintain overall site efficiency we have high beam loading constant ~50%
- Multiple pathways exist to 2-4x Luminosity upgrades
 - e.g. bunch format
- C³ has a relatively low current for 250 GeV CoM (0.19 A)
 - Could we push to match CLIC at 1.66 A?
 (8.5X increase?)
 - Requires increased focus on damping detuning & serious investigation of beam dynamics
 - great topic for C³ Demonstration R&D

Parameter	Units	Baseline	High-Lumi
Energy CoM	GeV	250	250
Gradient	MeV/m	70	70
Beam Current	Α	0.2	1.6
Beam Power	MW	2	16
Luminosity	x10 ³⁴	1.3	10.4
Beam Loading		45%	87%
RF Power	MW/m	30	125
Site Power	MW	~150	~180

Technical Timeline for 250/550 GeV CoM


Technically limited timeline following community engagement through the full Snowmass process to define the parameters of the C³ proposal

HL-LHC

Conclusions

- C³ can provide a rapid route to precision Higgs physics with a compact footprint
 - Possibly, a US-hosted facility
- Depending on community interests we could prioritize differently Giga-Z, luminosity vs. energy upgrade
 - extension up to 2 (3) TeV possible with 14 (21.5) km tunnel and 155 MeV/m gradient

Get in touch with us!

Info on how to register to mailing list: https://indico.slac.stanford.edu/event/7155/

Next workshop at SLAC, October 13-14 2022.

Stay tuned!

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors

SRIDHARA DASU⁴⁴, EMILIO A. NANNI³⁵, MICHAEL E. PESKIN³⁶, CATERINA VERNIERI³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAV¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHER LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV¹¹⁴, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHROEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANTAWI³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

Kaustubh Agashe²¹, Daniel Akerib³⁶, Aram Apyan², Jean-François Arguin²⁵, Charles Baltay⁴⁵, Barry Barish^{†9}, William Barletta²⁴, Matthew Basso⁴¹, Lothar Bauerdick¹⁴, SERGEY BELOMESTNYKH^{14,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT⁴³, YUNHAI CAI³⁶ Anadi Canepa¹⁴, Mario Cardoso³⁶, Viviana Cavaliere³, Sanha Cheong^{†36}, Raymond T. Co²³, John Conway⁵, Pallabi Das³², Chris Damerell³⁵, Sally Dawson³, Ankur Dhar³⁶ Franz-Josef Decker³⁶, Marcel W. Demarteau²⁸, Lance Dixon³⁶, Valery Dolgashev³⁶, Robin Erbacher⁵, Eric Esarey¹⁷, Pieter Everaerts⁴⁴, Annika Gabriel³⁶, Lixin Ge³⁶, Spencer Gessner³⁶, Lawrence Gibbons¹², Bhawna Gomber¹⁵, Julia Gonski¹¹, Stefania Gori⁸, Paul Grannis³⁶, Howard E. Haber⁸, Nicole M. Hartman^{†36}, Jerome Hastings³⁶, Matt Herndon⁴⁴ Nigel Hessey⁴², David Hitlin⁹, Michael Hoganson³⁶, Anson Hook²¹, Haoyi (Kenny) Jia⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEY³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI LI³⁶, MATTHIAS LIEPE¹², MIAOYUAN LIU³³, SHIVANI LOMTE⁴⁴, IAN Low^{†1}. Yang Ma³¹, Thomas Markiewicz³⁶, Petra Merkel¹⁴, Bernhard Mistlberger³⁶ ABDOLLAH MOHAMMADI⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴, Timothy Nelson³⁶, Cho-Kuen Ng³⁶, Alex Nguyen³⁶, Jason Nielsen⁸, Mohamed A. K. OTHMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PAGAN GRISO¹⁷, DENNIS PALMER³⁶ EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKES^{†36}, NAN PHINNEY³⁶, LUISE POLEY⁴² CHRIS POTTER²⁹, STEFANO PROFUMO^{†8}, THOMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶ James Rosenzweig⁶, Murtaza Safdari^{†36}, Pierre Savard^{41,42}, Alexander Savin⁴⁴, Bruce A. SCHUMM^{†8}, ROY SCHWITTERS³⁹, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹ John Smedley¹⁹, Emma Snively³⁶, Bruno Spataro¹⁶, Marcel Stanitzki¹³, Giordon Stark^{†8} Bernd Stelzer^{†42}, Oliver Stelzer-Chilton⁴², Maximilian Swiatlowski⁴², Richard Temkin²⁴ Julia Thom¹², Alessandro Tricoli³, Carl Vuosalo⁴⁴, Brandon Weatherford³⁶, Glen WHITE³⁶, STEPHANE WILLOCO²², MONIKA YADAV^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI Yamamoto⁴⁰ Charles Young³⁶, Liling Xiao³⁶, Zijun Xu³⁶, Jinlong Zhang¹, Zhi Zheng³⁴

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17660 April 12, 2022

C³ Demonstration Research and Development Plan

Editors:

EMILIO A. NANNI⁶, MARTIN BREIDENBACH⁶, CATERINA VERNIERI⁶, SERGEY BELOMESTNYKH^{2,7}, PUSHPALATHA BHAT² AND SERGEI NAGAITSEV^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH DURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, DENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI QIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVELY⁶, SAMI TANTAWI⁶, BRANDON WEATHERFOORD⁶, AND GLEN WHITE⁶

¹Cornell University

 2 Fermi National Accelerator Laboratory

 $^3{\rm Lawrence}$ Berkeley National Laboratory

⁴Los Alamos National Laboratory

⁵National Laboratory of Frascati, INFN-LNF

⁶SLAC National Accelerator Laboratory, Stanford University

⁷Stony Brook University

⁸University of California, Los Angeles

⁹University of Colorado, Boulder

¹⁰University of Chicago

SLAC-PUB-17629 November 1, 2021

C³: A "Cool" Route to the Higgs Boson and Beyond

MEI BAI, TIM BARKLOW, RAINER BARTOLDUS, MARTIN BREIDENBACH^{*}, PHILIPPE GRENIER, ZHIRONG HUANG, MICHAEL KAGAN, ZENGHAI LI, THOMAS W. MARKIEWICZ, EMILIO A. NANNI, MAMDOUH NASR, CHO-KUEN NG MARCO ORIUNNO, MICHAEL E. PESKIN^{*}, THOMAS G. RIZZO, ARIEL G. SCHWARTZMAN, DONG SU, SAMI TANTAWI, CATERINA VERNIERI^{*}, GLEN WHITE, CHARLES C. YOUNG

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

James Rosenzweig

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

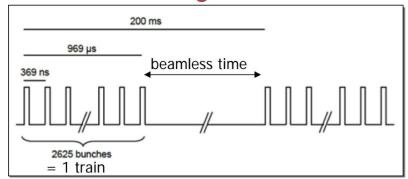
Fermi National Accelerator Laboratory, Batavia IL 60510-5011

Backup

Beam Format and Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

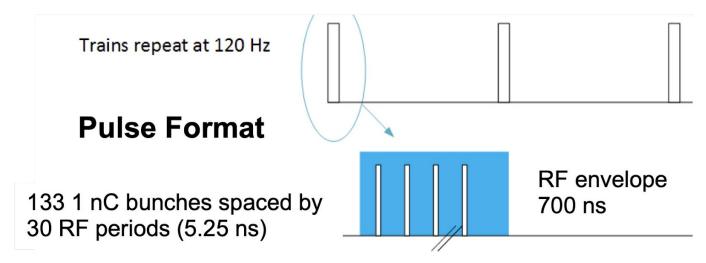
- Power pulsing possible, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
- Tracking detectors don't need active cooling
 - Significantly reduction for the material budget
- **Triggerless readout** is the baseline


 $100 \ \mu \mathrm{m}$ $300 \ \mu \mathrm{m}$ β_x 8.0 mm 13 mm 0.41 mm0.1 mm900 nm/rad500 nm/rad35 nm/rad 20 nm/rad ϵ_y N bunches 1312 133 Repetition rate $5~\mathrm{Hz}$ $120~\mathrm{Hz}$ Crossing angle 0.0140.020Crab angle 0.014/20.020/2

ILC

CCC

 C^3 time structure is compatible with SiD-like detector overall design and ongoing optimizations


ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

C³ timing structure

Collider

